If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2=231
We move all terms to the left:
p^2-(231)=0
a = 1; b = 0; c = -231;
Δ = b2-4ac
Δ = 02-4·1·(-231)
Δ = 924
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{924}=\sqrt{4*231}=\sqrt{4}*\sqrt{231}=2\sqrt{231}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{231}}{2*1}=\frac{0-2\sqrt{231}}{2} =-\frac{2\sqrt{231}}{2} =-\sqrt{231} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{231}}{2*1}=\frac{0+2\sqrt{231}}{2} =\frac{2\sqrt{231}}{2} =\sqrt{231} $
| 18*1.8^x=98 | | 4x-11/2=x/2 | | 14+r=16 | | p5=5 | | 15=50a | | 17m+8m-m=24 | | 9=5/v | | -8w-8=-5w=50 | | 3x2+4x2=252 | | -0.6a=-9 | | 6/12=c/4 | | (3x+50)°+(5x−20)°=90° | | -2.5x^2+160=0 | | 40+0.11x=53+0.09x | | 9s+2s-7s-3s=4 | | 3x-5.5=9.5 | | (3x+50)°=(5x−20)° | | 5(m−4)=20 | | 11.3−p2.8=1.5 | | 2(4x+15)=6(x+7) | | 56m=6m | | 8^(3x-4)=2^(x)*16 | | 16x+8+2=4x10+12 | | f(4)=3-4/3 | | -8/9(9v+36)=-8 | | 0.50+.10m=20.00 | | 17-23=-6x | | 24v-23v-v+2v+7v=45 | | 4x10=22 | | -3(k-7)=-6 | | x/19.7=0.609127055838 | | |2m+1|=7 |